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The Effect of Device Modeling on a Parameter i
Switching Continuation Method Used
in Waveform Balance Simulations

Gideon J. J. van zyl
Fig. 1. Type of circuit considered.

Abstract—The effect of device modeling on a continuation method
used to determine the large signal voltage and current waveforms of a approximated by band-limited waveforms. (If the circuit is capable of

nonlinear circuit is investigated. It is found that modeling the nonlinear . . . . .
element in such a way that the resulting waveform balance error function period doubling, thed” should be chosen accordingly.) This implies

is continuously differentiable greatly enhances the performance of the that there exists av such that the waveform functions,, v, i,

algorithm. i, and i, can be completely represented By samples at times
Index Terms— Continuation method, nonlinear circuit, parameter 7 = "’TO/A’ n iil(),l,---,ﬁ — 1. Let 7. represent th.e EO“;'mn
switching, waveform balance. vector (vg,---, vy ) = (vs(to), -, vs(ty—1)) and defined, i,

i., andi, in the same way. Assume an appropriate starting value
for @ and adjust7 until the error current. is zero. Ifi. is zero, the
I. INTRODUCTION voltage source labeled may be removed from the circuit without
Waveform balance is a common method for determining the voRdfecting any waveforms, ang, (representing,,) so obtained is a
age and current waveforms in circuits containing nonlinear elemesgiution to the circuit equations.
[1]-[3]. Many nonlinear circuits do not have unique solutions for To perform the adjustment procedure using a Newton—Raphson
the waveforms, and generally, one wants to find as many of theethod a (generally nonlinear) function
solutions as possible. Continuation methods are useful tools for
finding multiple solutions on the same solution branch [2], [4], [5]-
A parameter switching algorithm that gives rise to a continuatio,ch that
method is described in [5]. . . ;
It is shown in this paper that the same method is justified by ic =€ (n,7),k=0,1,---,N =1
application of the implicit function theorem [8]. In this context the
applicability of the algorithm is justified by a certain nonvanishin

e(n, ) = (" (, ).+, e 7 (7))

s well as the Jacobian matrix

determinant and a certain smoothness of the nonlinear equations. This ﬁ e _850
approach emphasizes the true local nature of the algorithm as well o QuviN-1
as the desirability of modeling the nonlinear elements in such a way J = :

that the resulting waveform balance error function is continuously eV ! 9eN !
differentiable. From a theoretical point of view the smoothness of the w0 T guNL

error function is only a sufficient condition. A short comparative studre calculated at each step of the iteration procedure. In particular
shows that, at least for the circuit used in the comparison, a smooth
error function greatly enhances the performance of the algorithm. e(n,¥) = A x (¥ —n x &)+ g(7) (1)

where A is a N by N matrix calculated from the frequency domain
Il. THE ALGORITHM admittanceY” of the linear element ang = (¢°,---,¢" ') is
The problem considered here is one of finding the current aggtermined by the nonlinear element. For details about calculating
voltage waveforms of a circuit such as depicted in Fig. 1. both A andy, see [3]. In most cases, baghand its partial derivatives
The circuit consists of a periodic independent voltage souré@n be calculated analytically. If an appropriate norm.ofs not as
labeled v,, a linear element labeled’, and a nonlinear element small as desired fof = @- a new value for#, say#,1, which may
depicted by the diode and nonlinear capacitois a scalar multiplier reduce the error, can be calculatediias, = @, — J~' x e(1, @.).
of the amplitude of the periodic voltage souréeis a function of
time such that the current through the linear eleniéndt timet is A, Motivation for Introducingy
equal toi(t), i (t) is the current through the nonlinear element at |45 ot always possible to guess a good initial valueifat a given
time ¢ andic = i, +i». The voltage source labeledis not part of .6 of, If the pair ¢, 7) is close to a local minimum of no further
the circuit, but is inserted to enable the calculation of the funation i -imization by a Newton—Raphson type method may be possible.
and, hence, solve the waveform bglance probl_em. . _ However, ify = 0 theni, = 0 is obviously a solution. If all partial
The problem that must be solved is the following. Given a periodig, i atives ofg are continuous at 0, andet J # 0, the implicit

function v, with period T, find a functioni,, (there may be more ¢, ion theorem guarantees the existence in some neighborhood of
than one) such that all circuit equations are satisfied when the currgpt point(x, 7) = (0,0) of a functionk = (A%,- -, k1) such that
H - » - 9 ’

through the nonlinear device at timds equal toi, (). .

The problem can be solved with the method of waveform balanc
in the following way. Assume that; is a fixed scalar. Assume %
that the actual waveforms are periodic with peribdand can be on

g;,h(n)) = 0. The derivative ofh with respect to is given by

: =J ' x Axu,. 2)
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Fig. 3. Original smooth function used to model the incremental diode
Fig. 2. Graph of points(n,v*) such thate(n,#) = 0 illustrating the capacitance together with the smoothed piecewise linear approximation. The
behavior ofe(7, ¥). The solution paths for both the original function andresults of the analysis for both functions are shown in Fig. 2.
the smoothed piecewise linear approximation are shown. See Fig. 3 for an

explanation.
to adjust while keepingy, fixed to obtain a new solution such that
. L . (e o s)(yp, W) = 0.

Thus, one can estimate an initial value foat, wheren is small ¢ one s interested in finding solutions on the same solution branch
asy x J=7 x A x 7, where.J is calculated a,f"’ 7) =(0.00. 11 o you don't want to jump to a distinct solution branch) an, @)
IS kep_t small eno_ugh, then hopefully Newton's method will convergg solution, then one wants to have the next solution point satisfy
and yield a solution a#. If for each value ofy one can calculate a (s, 7) = s(yv, u(ys)) Whereu is the unique local function such that
larger value fory, sayn + Anp, \_Nh(_are Newton’s method converges, $)(g,u(y)) = 0 and (5a, 7) = (ya, u(ya)). In practice, this
and 'fA" dpes _not be_come prohlbltlvely smgll at some stage, one Cggjyes setting limits on how far the solution point may deviate from
continue in this fashion untif = 1. The function) x v, wheren =1 w0 predicted point. The setting of such limits are also desirable to

is considered as the function for which a solution is desired, so if thee\ent one from missing important features of a particular solution
process continues until = 1, a solution has been found. branch such as jump resonances [6]

Unfortunately, it is generally not true that one can continue increas-It is impractical to keep on calculating points, ) until det J =
ing  and keep on finding points)(¥) where the Newton—RaphsonU_ i

method con_verges.s To show why Ehis is not the case, 9°“Sidef B}frtial derivative appearing in (2). If this limit is exceeded, a suitable
graph of points 4, v”) such that(, #) = 0, as shown in Fig. 2. ,,tion 5 is the linear function that swapswith v*. A good choice

The points were obtained for a circuit analyzed by the methqg ;. is the row in (2) with the largest absolute value. As long as
outlined in the following section. From Fig. 2 it is clear thatas the rank of the Jacobian matriX(y,7) is IV, this produces new

is increased from 0 to 1, poir;ts are encountered where the par{igliahies, and @ for which the criteria for applying the implicit
derivative of_the local functlo_th with respect ta; becomes |n_f|n|te. function theorem are satisfied. New solutions can then be found by
At these points, another point wheeé;), 7) = 0 cannot easily be changingy as the independent variable and iteratihgntil the partial
found by the procedure outlined in the preceding paragraphs.  garivatives in (2) are again within limits, at which poiptcan once

again be used as the independent variable. When switching between
B. Finding Connected Solutions When One of the Partial n andy as independent yariaples, the ;ign of the last increment.in
Derivatives of the Local Functioh Becomes Very Large the new mdependent_ variable is mamtamed to prevent back tracking
to previously determined solution points.

It is easier to set a limit on the largest absolute value of any

Suppose that a solution had been obtained at the ppint{). The
conditions that must be satisfied in order that the implicit function
theorem guarantees the existence of a local functiom some ll. EFFECT OF DEVICE MODELING
neighborhood ofi., 7.) such that(n, k(7)) = 0, are that the partial  In the preceding section, care was taken to show that the con-
derivativesde® /0v?, 0 < k,j < N—1 evaluated at the poing{, #,) tinuation method is justified by the implicit function theorem. The
are all continuous and that the determinant of the matrewvaluated application of the theorem requires that the error functions
at the point {., ¥.) is not zero. The first condition can usually becontinuously differentiable. This is only a sufficient condition and
satisfied by being careful with the definition of the functigr{e.g., the question remains how the performance of the method is affected
by expressing the nonlinear resistance and capacitance in term$y#an error function that is not continuously differentiable. A varactor
exponential functions rather than piecewise linear functions). It witlircuit was analyzed with both a smooth and a piecewise linear
be assumed that this condition is satisfied. approximation for the diode capacitance. The method failed to find
Suppose that a poing{, 7.) with e(n.,7,) = 0 is encountered the entire solution path when the piecewise linear approximation was
wheredet J = 0. Normally one views; as a parameter and considersised.
¥ as the unknown quantity that must be calculated at a given valueTo get some insight into the failure, a second experiment was done
of » such thate(n,#) = 0. There is, however, no reason why where a fraction of each section of the piecewise linear approximation
should be considered as the independent variable and one can consi@darused to create a polynomial fit joining the section smoothly with
a one-to-one differentiable function such that(s,7) = s(y, ). the next section. This is shown in Fig. 3.
Then, e(n.,7.) = (e o $)(ya,Wa) = 0. With a suitable choice  The continuation method managed to trace the entire solution path
of s it may be possible to satisfy the criteria for applying theip to where only 1/40th of each section was used for the polynomial
implicit function theorem so that locally a functianexists such that fit. From Fig. 2, it is clear that the solutions for the original smooth
(eos)(y,u(y)) = 0. Since the derivative af can be calculated, one function and the smoothed piecewise linear approximation have
can estimate a new poingy, @.) and change the iteration procedurehe same broad characteristics. However, the solution path of the
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smoothed piecewise linear approximation has a large number [éfine
very sharp bends. In order to negotiate these bends the limits on
the difference between the predicted next solution point using the To. (g, @) = [ (g @) JZ (g, @)]
derivative and the actual one found by the Newton—Raphson step had "% MEASREA S ,
to be set in the order of 0.1%. It required a total of 1676 iterations and =17 (s (g @)+ | TTV Y (550, @)
830 s (on a personal computer with a 75-MHz Pentium processor) to
trace the entire solution path. For the original smooth function, the N . . .
percentage tolerance could be set to 5% and it required 101 iterati$fere /s, (v, @) is the first column ot/y, (y, @7). Let
and 37.5 s to trace the entire solution path.

Note that for the particular circuit there are solutions not on the
solution path traced out by the algorithm. A random search-atl

-
)

(y, @) =5;(n,7) = (e 05;) (y, @)

found 14 distinct solutions. =Ju,(y, @) = [ Iy, (y, @)|J5 (y, D). 3)
IV. CONCLUSION Let (7., ¥.) be a solution point, i.e.e(n.,¥) = 0. If
The motivation of the parameter switching continuation methd@nk(Ja(74,7.)) = N then for at least one choice of one

from the point of view of the implicit function theorem shows that &2 det(Ji (ya, @.)) # 0, where (ya, @) = s;(na, ). If al
smooth error function forms part of a set of sufficient conditions t82rtial derivatives appearing if. (1., 7..) are continuous, so are all
implement the algorithm locally. It was shown that the performan@@rtial derivatives appearing ify;(y., @.). All criteria for applying
of the algorithm is greatly dependent on the smoothness of the erf3¢ implicit function theorem are thus satisfied. Therefore, there
function. exists an open sdf containingy., an open set’ containing.,
There is no method of ensuring that all solutions at a particuldfd @ differentiable functiom such that for eacly in U there is a
input level have been found. This is inherent in the nature &fiqueu(y)in V7 such that(e o s;)(y,u(y)) = 0. By utilizing the
the implicit function theorem, namely that it locally guarantees thHi@ct thatu is differentiable and: o s, is identically zero ori’, one

existence of a unique solution, but not globally. can determine the derivative of with respect toy at y.:
The inability to determine whether all solution paths have been
found leaves a gap in the analysis of nonlinear microwave circuits. u' (ya) = _[ij (Yo @) % Jblj(y @a). 4)

In the case where the nonlinear elements are limited to nonlinear

resistors there is a theory by which it can be shown that under

some simple assumptions multiple solutions cannot exist [7]. No suEluation (4) is used to predict the new solution point and (3) is used
theory does, to the knowledge of the author, exist for dealing with the Newton—Raphson step. As can be seen, implementation of the
circuits containing combinations of nonlinear resistors and capacitetigorithm simply involves exchanging of columns in some Jacobian

as is frequently encountered in microwave circuits. matrices.
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