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The Effect of Device Modeling on a Parameter
Switching Continuation Method Used

in Waveform Balance Simulations

Gideon J. J. van Zyl

Abstract—The effect of device modeling on a continuation method
used to determine the large signal voltage and current waveforms of a
nonlinear circuit is investigated. It is found that modeling the nonlinear
element in such a way that the resulting waveform balance error function
is continuously differentiable greatly enhances the performance of the
algorithm.

Index Terms— Continuation method, nonlinear circuit, parameter
switching, waveform balance.

I. INTRODUCTION

Waveform balance is a common method for determining the volt-
age and current waveforms in circuits containing nonlinear elements
[1]–[3]. Many nonlinear circuits do not have unique solutions for
the waveforms, and generally, one wants to find as many of the
solutions as possible. Continuation methods are useful tools for
finding multiple solutions on the same solution branch [2], [4], [5].
A parameter switching algorithm that gives rise to a continuation
method is described in [5].

It is shown in this paper that the same method is justified by
application of the implicit function theorem [8]. In this context the
applicability of the algorithm is justified by a certain nonvanishing
determinant and a certain smoothness of the nonlinear equations. This
approach emphasizes the true local nature of the algorithm as well
as the desirability of modeling the nonlinear elements in such a way
that the resulting waveform balance error function is continuously
differentiable. From a theoretical point of view the smoothness of the
error function is only a sufficient condition. A short comparative study
shows that, at least for the circuit used in the comparison, a smooth
error function greatly enhances the performance of the algorithm.

II. THE ALGORITHM

The problem considered here is one of finding the current and
voltage waveforms of a circuit such as depicted in Fig. 1.

The circuit consists of a periodic independent voltage source
labeled vs, a linear element labeledY , and a nonlinear element
depicted by the diode and nonlinear capacitor.� is a scalar multiplier
of the amplitude of the periodic voltage source.il is a function of
time such that the current through the linear elementY at time t is
equal toil(t), in(t) is the current through the nonlinear element at
time t and ie = il + in. The voltage source labeledv is not part of
the circuit, but is inserted to enable the calculation of the functionin
and, hence, solve the waveform balance problem.

The problem that must be solved is the following. Given a periodic
function vs with period T , find a functionin (there may be more
than one) such that all circuit equations are satisfied when the current
through the nonlinear device at timet is equal toin(t).

The problem can be solved with the method of waveform balance
in the following way. Assume that� is a fixed scalar. Assume
that the actual waveforms are periodic with periodT and can be
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Fig. 1. Type of circuit considered.

approximated by band-limited waveforms. (If the circuit is capable of
period doubling, thenT should be chosen accordingly.) This implies
that there exists aN such that the waveform functions,vs, v, il,
ie, and in can be completely represented byN samples at times
tn = nT=N , n = 0; 1; � � � ; N � 1. Let ~vs represent the column
vector (v0s ; � � � ; v

N�1
s ) = (vs(t0); � � � ; vs(tN�1)) and define~v, ~il,

~ie, and~in in the same way. Assume an appropriate starting value
for ~v and adjust~v until the error current~ie is zero. If~ie is zero, the
voltage source labeledv may be removed from the circuit without
affecting any waveforms, and~in (representingin) so obtained is a
solution to the circuit equations.

To perform the adjustment procedure using a Newton–Raphson
method a (generally nonlinear) function

e(�;~v) = (e0(�;~v); � � � ; eN�1(�;~v))

such that

i
k

e = e
k(�;~v); k = 0; 1; � � � ; N � 1

as well as the Jacobian matrix

J =

@e0

@v0
� � �

@e0

@vN�1
...

@eN�1

@v0
� � �

@eN�1

@vN�1

are calculated at each step of the iteration procedure. In particular

e(�;~v) = A� (~v � � � ~vs) + g(~v) (1)

whereA is aN by N matrix calculated from the frequency domain
admittanceY of the linear element andg = (g0; � � � ; gN�1) is
determined by the nonlinear element. For details about calculating
bothA andg, see [3]. In most cases, bothg and its partial derivatives
can be calculated analytically. If an appropriate norm of~ie is not as
small as desired for~v = ~vr a new value for~v, say~vr+1, which may
reduce the error, can be calculated as~vr+1 = ~vr � J�1 � e(�;~vr).

A. Motivation for Introducing�

It is not always possible to guess a good initial value for~v at a given
value of�. If the pair (�, ~v) is close to a local minimum ofe no further
minimization by a Newton–Raphson type method may be possible.
However, if� = 0 then~in = 0 is obviously a solution. If all partial
derivatives ofg are continuous at 0, anddet J 6= 0, the implicit
function theorem guarantees the existence in some neighborhood of
the point(�;~v) = (0; 0) of a functionh = (h0; � � � ; hN�1) such that
e(�; h(�)) = 0. The derivative ofh with respect to� is given by

@h0

@�
...

@hN�1

@�

= J
�1

� A� vs: (2)
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Fig. 2. Graph of points(�; v3) such thate(�;~v) = 0 illustrating the
behavior ofe(�;~v): The solution paths for both the original function and
the smoothed piecewise linear approximation are shown. See Fig. 3 for an
explanation.

Thus, one can estimate an initial value for~v at � where� is small
as� � J�1 � A � ~vs whereJ is calculated at(�; ~v) = (0; 0). If �
is kept small enough, then hopefully Newton’s method will converge
and yield a solution at�. If for each value of� one can calculate a
larger value for�, say� + ��, where Newton’s method converges
and�� does not become prohibitively small at some stage, one can
continue in this fashion until� = 1. The function��vs where� = 1

is considered as the function for which a solution is desired, so if the
process continues until� = 1, a solution has been found.

Unfortunately, it is generally not true that one can continue increas-
ing � and keep on finding points (�; ~v) where the Newton–Raphson
method converges. To show why this is not the case, consider the
graph of points (�; v3) such thate(�;~v) = 0, as shown in Fig. 2.

The points were obtained for a circuit analyzed by the method
outlined in the following section. From Fig. 2 it is clear that as�
is increased from 0 to 1, points are encountered where the partial
derivative of the local functionh3 with respect to� becomes infinite.
At these points, another point wheree(�;~v) = 0 cannot easily be
found by the procedure outlined in the preceding paragraphs.

B. Finding Connected Solutions When One of the Partial
Derivatives of the Local Functionh Becomes Very Large

Suppose that a solution had been obtained at the point (�a, ~va). The
conditions that must be satisfied in order that the implicit function
theorem guarantees the existence of a local functionh in some
neighborhood of (�a, ~va) such thate(�; h(�)) = 0, are that the partial
derivatives@ek=@vj ; 0 � k; j � N�1 evaluated at the point (�a, ~va)
are all continuous and that the determinant of the matrixJ evaluated
at the point (�a, ~va) is not zero. The first condition can usually be
satisfied by being careful with the definition of the functiong (e.g.,
by expressing the nonlinear resistance and capacitance in terms of
exponential functions rather than piecewise linear functions). It will
be assumed that this condition is satisfied.

Suppose that a point (�a, ~va) with e(�a; ~va) = 0 is encountered
wheredetJ = 0. Normally one views� as a parameter and considers
~v as the unknown quantity that must be calculated at a given value
of � such thate(�;~v) = 0. There is, however, no reason why�
should be considered as the independent variable and one can consider
a one-to-one differentiable functions such that(�;~v) = s(y; ~w).
Then, e(�a; ~va) = (e � s)(ya; ~wa) = 0. With a suitable choice
of s it may be possible to satisfy the criteria for applying the
implicit function theorem so that locally a functionu exists such that
(e�s)(y; u(y)) = 0. Since the derivative ofu can be calculated, one
can estimate a new point (yb, ~we) and change the iteration procedure

Fig. 3. Original smooth function used to model the incremental diode
capacitance together with the smoothed piecewise linear approximation. The
results of the analysis for both functions are shown in Fig. 2.

to adjust~w while keepingyb fixed to obtain a new solution such that
(e � s)(yb; ~wb) = 0.

If one is interested in finding solutions on the same solution branch
(i.e. you don’t want to jump to a distinct solution branch) and (�a, ~va)
is a solution, then one wants to have the next solution point satisfy
(�b; ~vb) = s(yb; u(yb)) whereu is the unique local function such that
(e � s)(y; u(y)) = 0 and (�a; ~va) = s(ya; u(ya)). In practice, this
involves setting limits on how far the solution point may deviate from
the predicted point. The setting of such limits are also desirable to
prevent one from missing important features of a particular solution
branch such as jump resonances [6].

It is impractical to keep on calculating points (�, ~v) until det J =

0. It is easier to set a limit on the largest absolute value of any
partial derivative appearing in (2). If this limit is exceeded, a suitable
functions is the linear function that swaps� with vk. A good choice
of k is the row in (2) with the largest absolute value. As long as
the rank of the Jacobian matrixe0(�;~v) is N , this produces new
variablesy and ~w for which the criteria for applying the implicit
function theorem are satisfied. New solutions can then be found by
changingy as the independent variable and iterating~w until the partial
derivatives in (2) are again within limits, at which point� can once
again be used as the independent variable. When switching between
� and y as independent variables, the sign of the last increment in
the new independent variable is maintained to prevent back tracking
to previously determined solution points.

III. EFFECT OF DEVICE MODELING

In the preceding section, care was taken to show that the con-
tinuation method is justified by the implicit function theorem. The
application of the theorem requires that the error functione is
continuously differentiable. This is only a sufficient condition and
the question remains how the performance of the method is affected
by an error function that is not continuously differentiable. A varactor
circuit was analyzed with both a smooth and a piecewise linear
approximation for the diode capacitance. The method failed to find
the entire solution path when the piecewise linear approximation was
used.

To get some insight into the failure, a second experiment was done
where a fraction of each section of the piecewise linear approximation
was used to create a polynomial fit joining the section smoothly with
the next section. This is shown in Fig. 3.

The continuation method managed to trace the entire solution path
up to where only 1/40th of each section was used for the polynomial
fit. From Fig. 2, it is clear that the solutions for the original smooth
function and the smoothed piecewise linear approximation have
the same broad characteristics. However, the solution path of the
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smoothed piecewise linear approximation has a large number of
very sharp bends. In order to negotiate these bends the limits on
the difference between the predicted next solution point using the
derivative and the actual one found by the Newton–Raphson step had
to be set in the order of 0.1%. It required a total of 1676 iterations and
830 s (on a personal computer with a 75-MHz Pentium processor) to
trace the entire solution path. For the original smooth function, the
percentage tolerance could be set to 5% and it required 101 iterations
and 37.5 s to trace the entire solution path.

Note that for the particular circuit there are solutions not on the
solution path traced out by the algorithm. A random search at� = 1

found 14 distinct solutions.

IV. CONCLUSION

The motivation of the parameter switching continuation method
from the point of view of the implicit function theorem shows that a
smooth error function forms part of a set of sufficient conditions to
implement the algorithm locally. It was shown that the performance
of the algorithm is greatly dependent on the smoothness of the error
function.

There is no method of ensuring that all solutions at a particular
input level have been found. This is inherent in the nature of
the implicit function theorem, namely that it locally guarantees the
existence of a unique solution, but not globally.

The inability to determine whether all solution paths have been
found leaves a gap in the analysis of nonlinear microwave circuits.
In the case where the nonlinear elements are limited to nonlinear
resistors there is a theory by which it can be shown that under
some simple assumptions multiple solutions cannot exist [7]. No such
theory does, to the knowledge of the author, exist for dealing with
circuits containing combinations of nonlinear resistors and capacitors
as is frequently encountered in microwave circuits.

APPENDIX

In this appendix, the equations necessary to predict new values
for (�, ~v) and to apply a Newton–Raphson method to adjust~w until
(e�s)(y; ~w) = 0 at a fixed value ofy are derived for the case where
s is the function that interchanges� with vk for somek.

Care is taken to determine the requirements for the existence of the
various derivatives. One assumes that the matrixA and the functiong
appearing in (1) are known and thatg is continuously differentiable.

From (1) it follows thate0(�;~v) = [�A � ~vsjA + Jg]where

Jg =

@g0

@v0
� � �

@g0

@vN�1

...
@gN�1

@v0
� � �

@gN�1

@vN�1

and all partial derivatives are evaluated at (�, ~v).
Let

e
0

(�;~v) = Ja(�;~v) = [J
1
a(�;~v)j � � � jJ

N+1
a (�;~v)]

whereJia(�;~v) is the ith column ofJa(�;~v).
Define sj : RN+1 ! RN+1 so that

sj(x
1
; � � � ; x

N+1
) = (x

�(1)
; � � � ; x

�(N+1)
)

where

�(i) =

j if i = 1

1 if i = j

i if i 62 f1; jg:

Define

Jb (y; ~w) = [J
1
b (y; ~w)jJ

2
b (y; ~w)]

= [J
�(1)
a (sj(y; ~w))j � � � jJ

�N+1)
a (sj(y; ~w))]

whereJ1
b (y; ~w) is the first column ofJb (y; ~w). Let

(y; ~w) = sj(�;~v)) (e � sj)
0

(y; ~w)

=Jb (y; ~w) = [J
1
b (y; ~w)jJ

2
b (y; ~w)]: (3)

Let (�a, ~va) be a solution point, i.e.,e(�a; ~va) = 0. If
rank(Ja(�a; ~va)) = N then for at least one choice ofj one
has det(J2b (ya; ~wa)) 6= 0, where (ya; ~wa) = sj(�a; ~va). If all
partial derivatives appearing inJa(�a; ~va) are continuous, so are all
partial derivatives appearing inJb (ya; ~wa). All criteria for applying
the implicit function theorem are thus satisfied. Therefore, there
exists an open setU containingya, an open setV containing ~wa,
and a differentiable functionu such that for eachy in U there is a
uniqueu(y) in V such that(e � sj)(y; u(y)) = 0. By utilizing the
fact thatu is differentiable ande � sj is identically zero onU , one
can determine the derivative ofu with respect toy at ya:

u
0

(ya) = �[J
2
b (ya; ~wa)]

�1
� J

1
b (ya; ~wa): (4)

Equation (4) is used to predict the new solution point and (3) is used
in the Newton–Raphson step. As can be seen, implementation of the
algorithm simply involves exchanging of columns in some Jacobian
matrices.
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